
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Control Flow Analysis for Event-Driven
Programs

Florian Scheibner





FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Control Flow Analysis for Event-Driven Programs

Kontrollflussanalyse von ereignisgesteuerten
Programmen

Author: Florian Scheibner
Supervisor: Dr. Christian Grothoff
Advisor: Sree Harsha Totakura
Date: July 16, 2014





I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

Munich, July 16, 2014 Florian Scheibner





Acknowledgments

I would like to thank Dr. Christian Grothoff for supervising my thesis and his ideas.

I also want to thank Sree Harsha Totakura for his helpful advice and support throughout
the last months.

vii





Abstract

Static analysis is often used to automatically check for common bugs in programs. Com-
pilers already check for some common programming errors and issue warnings; however,
they do not do a very deep analysis because this would slow the compilation of the pro-
gram down. Specialized tools like Coverity or Clang Static Analyzer look at possible runs
of a program and track the state of variables in respect to function calls. This information
helps to identify possible bugs. In event driven programs like GNUnet callbacks are reg-
istered for later execution. Normal static analysis cannot track these function calls. This
thesis is an attempt to extend different static analysis tools so that they can handle this
case as well. Different solutions were thought of and executed with Coverity and Clang.
This thesis describes the theoretical background of model checking and static analysis, the
practical usage of wide spread static analysis tools, and how these tools can be extended
in order to improve their usefulness.

Zusammenfassung

Statische Codeanalyse wird of zur automatisierten Fehlersuche verwendet. Compiler über-
prüfen bereits einfache Programmierfehler und geben Warnungen aus, es wird jedoch kei-
ne tiefere Analyse des Programms durchgeführt da dies den Compiliervorgang verlängern
würde. Spezialisierte Programme, wie zum Beispiel Coverity oder Clang Static Analyzer,
untersuchen alle möglichen Programmpfade und verfolgen die Werte von Variablen. Mit-
hilfe dieser Informationen können sie auf mögliche Fehler schließen. In ereignisgesteuer-
ten Programmen, wie zum Beispiel GNUnet, werden Callback Funktionen registriert und
später ausgeführt. Durch normale statische Codeanalyse können diese Callback Funktio-
nen nicht analysiert werden. Diese Bachelorarbeit verfolgt das Ziel die Tools so zu erwei-
tern damit auch dieser Fall abgedeckt werden kann. Verschiedene Lösungen wurden für
Coverity und Clang erarbeitet. Diese Arbeit beschreibt die theoretischen Hintergründe zu
Modellprüfung und statischer Codeanalyse, die Verwendung von verbreiteten statischen
Analyse Tools und wie diese für diesen Fall verbessert werden können.
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1. Introduction

This thesis started out with the goal of improving the analysis of control flows in event
driven programs written in the C language. Static analysis tools allow finding common
programming errors by analyzing a program’s control flow. By using the techniques de-
scribed in Section 2.1, these tools follow possible program flows and infer possible bugs.
This is done by tracking the value of variables over multiple function calls in the control
flow and checking if it reaches any illegal program states. This offers the ability to observe
wrong behaviour. For example, a flaw could be a variable that has been allocated using
malloc() and is freed twice via free(). Static analysis tools remember that this variable
has already been freed and flags the second free as a bug in the analysis report.

Event driven programs have a scheduler that implements an event loop. Event loops are
used to wait for events such as interrupts from Input/Output(IO) and timed alarms. When
an event occurs, the scheduler executes a callback function registered for that event. Since
the execution of the callback is asynchronous, the callback is registered with a closure
which contains state information that is passed to the callback function when it is executed.
Static analysis tools cannot understand this scheduler function because the callback and
the closure are stored in the memory first and they are executed only later after invocation
of the event loop function. This is explained in Chapter 5. This deficiency means that the
static analysis tools cannot follow the control flow via these paths, and consequently they
do not detect when there is a bug in these control flows. Chapter 3 shows which bugs
could occur. In this thesis we outline the different approaches we tried so that a static
analysis tool can also follow the program flow via these event callbacks. As a result, more
bugs could be found.

The motivation for this thesis stemmed from the GNUnet project, 1, developed by the Free
and Secure Network Systems Group at TUM. The source code is regularly analyzed for
common programming errors by using the commercial tool Coverity2 and the Clang Static
Analyzer3. The features of these tools are described in Chapter 4. Since GNUnet employs
event loops, the existing static analysis tools were unable to track bugs resulting from
asynchronous control flows.

Efforts are made to extend these tools to also track asynchronous control flows. Model ex-
tensions are tried with Coverity to extend functions of event loops, but due to its inability
to track function pointers this approach is not successful. Clang is able to track function
pointers but it can only analyze each translation unit separately. A translation unit (short
TU) is the output of the preprocessor, i.e. it is the source file with all the macros and include

1https://gnunet.org/
2http://www.coverity.com/
3http://clang-analyzer.llvm.org/

1
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1. Introduction

directives expanded[1, p. 9]. Finally, the intended analysis could be carried using Clang
by combining all translation units into one as explained in Chapter 6.

In order to test the generality of our approach, the libevent4 project was analyzed as well.
It offers a generic event loop functionality and can be used by other projects as a library.
Different projects such as Tor, tmux, and Google Chrome use this event loop library. In
this thesis, the Tor and the tmux project have been analyzed using the same approach that
was used for GNUnet. The results can be found in Chapter 7. Possibilities to improve the
approach are discussed in conclusion (Chapter 8).

4http://libevent.org/

2
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2. Related Work

There are some properties that specify the precision of analysis techniques. Flow sensitive
means that the analysis considers the order of execution of statements. Path sensitive means
it distinguishes between different paths through the program. Interprocedural means that
the analysis also follows into the called function. Context sensitive means that the return
value that is used for the analysis depends on the callsite, context insensitive analysis can
only infer a set of possible return values. [2, p. 1166]

Model checking and static analysis are two different techniques to verify correctness prop-
erties of a program. Model checking tries to achieve this by transforming the high level
source code to some formal model for which special verification algorithms exist. This is
for example a propositional or temporal logic[3]. It is a very precise analysis which is al-
ways flow sensitive. Static analysis, on the other hand, is often more imprecise. There are
different kinds of static analysis. Compilers do a shallow static analysis for optimization,
such as finding unused variables. More precise analysis would slow down the compi-
lation speed. There are special tools for that purpose. They analyze the propagation of
values through the program and find flaws like division by zero[4]. The distinction be-
tween model checking and static analysis became less with time. Model checking used
to be very precise and flow sensitive, whereas static analysis was very abstract and flow
insensitive. This has changed and abstraction is also used for model checking and static
analysis is often flow sensitive[2]. In practice there is still the distinction that static analysis
is used for a general analysis over a large code base whereas model checking is more used
to analyze a small part of the code.

2.1. Model Checking

2.1.1. Flow Analysis

In order to apply model checking to a program, all statements have to be represented as
logical formulae. The concept is to have all program transitions in the model and define
the wanted and unwanted states. A proof can then be constructed to show that from a
given starting state the unwanted states are never reached. Figure 2.2 shows an example
of a model using propositional logic for the source code in Listing 2.1. A SAT solver can be
used to determine whether the error state is reachable. The syntax is based on the lecture
“Model Checking” by Professor Andrey Rybalchenko [5].

3



2. Related Work

1 int ret
2 main(x)
3 assume(x >= 0)
4 f(x) 2
5 assert(ret >= 0)
6

7 f(a)
8 if (a >= 0)
9 f(a − 1)

10 ret = a − ret
11 else
12 ret = 1

Listing 2.1: Sample program

m1

m2

m3

ok err

f1

f2

f3

f4
x ≥ 0

localmain

ret ≥ 0

ret < 0

callmain,f

a ≥ 0

callf,f localf

a < 0

Figure 2.1.: Call graph of procedures main and f

To apply logical reasoning to the program, each statements’ effect on the variables has to
be expressed as logical formula. The derived logical formulae are called the model of the
program. Each statement can change the global and local variables. This is modelled as
having the set of global variables VG before the statement and the modified set V ′

G after-
wards. Equivalently the changes to the set of local variables Vp are defined in V ′

p . The
modelling for procedures p, q ∈ P can be constructed as:

init(VG, Vp) —init condition
This clause assigns default values to the global variables and sets the program counter to
the first line of the procedure p.

errorp(VG, Vp) —error condition
All program states that satisfy the error condition are unwanted behaviour. The goal of
model checking is to prove for a given program that the error condition will never be
reached.

stepp(VG, Vp, V ′
G, V ′

p) —Intra procedure step
Each action in a procedure is modelled with the step clause. Global and local variables can
be read and changed; this includes the program counter that moves to the next step. The
shortcut movep(s1, s2) can be used instead of pcp = s1 ∧ pc′p = s2. The program counter
does not move to another procedure but only inside of one procedure. Conditions like if
statements are written as inequalities over the given variables. All variables of Vp that are
still needed later on need to be defined for V ′

p by means of x′ = x or just skip(x).

callp,q(VG, Vp, Vq) —procedure call
The call clause initializes a new set of local variable Vq for the sub procedure. It contains the
arguments, local variables defined in q, and the program counter. No additional variables
are changed.

retp(VG, Vp, V ′
G) —return value passing

The ret clause sets the return value of a procedure by setting the global ret variable in V ′
G.

No further changes are made.

4



2.1. Model Checking

localp(Vp, V ′
p) —callsite program counter change

This is the third part of the call constellation. While the first two clauses, call and ret,
change the program counter of the called procedure and set the return value, local applies
to the calling procedure and moves its program counter forward.

The states from Figure 2.1 are used as values for the program counter. For each intrapro-
cedural step there is one conjunction in the step formulae in Figure 2.2. For the sake of
simplicity no stack is modelled here that could handle the return values. Consequently, a
global variable ret is used, which is modified at the end of each procedure and passes the
value on to the calling procedure. This change is modelled in the set of global variables
VG. The model that can then be verified is the conjunction of all the separate formulae. If
the model satisfies the error condition, then there is a bug in the program.

init(VG, Vmain) = (pmain = m1)
stepmain(VG, Vmain, V

′
G, V

′
main) = (movemain(m1,m2) ∧ x ≥ 0 ∧ skip(ret, a))∨

(movemain(m3, ok) ∧ ret ≥ 0 ∧ skip(ret, x))∨
(movemain(m3, err) ∧ ret < 0 ∧ skip(ret, x))

stepf (VG, Vf , V
′
G, V

′
f ) = (movef (f1, f2) ∧ a ≥ 0 ∧ skip(ret, a))∨

(movef (f1, f4) ∧ a′ < 0 ∧ skip(ret, a)
callmain,f (VG, Vmain, Vf ) = (pcmain = m2 ∧ pc′f = f1 ∧ a′ = x)

callf,f (VG, Vf , Vf ) = (pcf = f2 ∧ pc′f = f1 ∧ a′ = a− 1)

localmain(Vmain, V
′
main) = (movemain(m2,m3) ∧ skip(x))

localf (Vf , V
′
f ) = (movef (f2, f3) ∧ skip(a))

retf (VG, Vf , V
′
G) = (pcf = f3 ∧ ret′ = a− ret)∨

(pcf = f4 ∧ ret′ = 1)
retmain(VG, Vmain, V

′
G) = (pcmain = ok ∧ ret′ = ret)

errormain(VG, Vmain) = (pcmain = err)
model(VG, Vmain) = init(VG, Vmain) ∧ stepmain(VG, Vmain, V

′
G, V

′
main)∧

stepf (VG, Vf , V
′
G, V

′
f ) ∧ callmain,f (VG, Vmain, Vf )∧

callf,f (VG, Vf , Vf ) ∧ localmain(Vmain, V
′
main)∧

localf (Vf , V
′
f ) ∧ retf (VG, Vf , V

′
G)∧

retmain(VG, Vmain, V
′
G)

Figure 2.2.: Model of Listing 2.1

The first step for model checking has been done. The original program code has been
transformed into a model that can be analyzed for correctness properties. There are differ-
ent proof systems: for example, to show that a program terminates or that the error state
is never reached.

2.1.2. Type Systems

Besides analyzing the flow in a program, the types of variables should always match as
well. In a statically typed language like C the compiler can already check most forms of

5
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T(a) = bool

T ` a : bool

T(b) = int

T ` b : int

3 ∈ Z
T ` 3 : int

T=[a: bool, b: int] ` if a then b else 3 : int

Figure 2.3.: Example of type inference

wrong assignments. There are, however, possible programming styles that prevent these
checks. For example, using void pointers as function arguments.

To show the idea behind these checks, a simple functional language is used. The syntax
can be found in Appendix B. For this simple case, only ints and booleans are supported.
The type environment T saves the type for each variable. Then different inference rules
are applied. When no inference rule applies, then a type mismatch has been detected.
Figure 2.3 shows an example of such an application of inference rules. In this case there is
no error because all types match.

2.2. Static Analysis

Data flow analysis is a simple approach to static analysis. It is not very powerful and is only
used by compilers for optimization as it is too simple to be useful for verification. There are
two kinds of data flow analysis: forward and backward analysis. For example, expression
that occur twice in the program can be computed only once when the participating vari-
ables don’t change in between. Forward analysis can be used to detect whether variables
have changed or not, this is called Available Expression Analysis. Another compiler opti-
mization is to store variables in CPU registers for faster access. When the end of a block
is reached, the compiler needs to know whether this variable is still going to be needed
afterwards, if not it does not need to be stored. This case can be detected with backward
analysis. Data flow analysis stores the variables that are changed or accessed in each step
in order to draw these conclusions. [4]

Abstract interpretation is one technique to to detect errors in a program. It introduces new
semantics that are an approximation of the original program. Lattices are used for this new
abstract domain. A variable can then vary between not initialized and all values possible.
The possible intermediate values can be defined differently. This abstract domain has to
ensure that the program always terminates; therefore, there must be some heuristic in
loops that sets the value to “all possible values” at some point. This analysis can be used
to detect errors such as division by zero. [4]

Symbolic analysis is used when the input values are not known yet. The unknown values
are represented as symbols and these symbols are used to describe expressions that use
these values. Reading from a file can be such an unknown variable, for example. The
variable a is read from a file and thus has the symbolic value ∇1. The definition of b =

6



2.2. Static Analysis

a + 5 results in b having the value ∇1 + 5. Symbolic analysis and be used for compiler
optimization, but it can also be used to compute the worst-execution time.[4]

7





3. Expected Results

Static code analysis tools like Coverity find many bugs that occur through common pro-
gramming errors. These include wrong use of malloc() and free(), usage of uninitial-
ized pointers, and some buffer overflows. These conclusions can be drawn by building
a call graph and inferring the possible values of variables and their propagation through
function calls. The reports issued by the static analyzer tools help the programmer to im-
prove his program. The automated tools, however, are not perfect. For example, they
cannot understand constructs like the scheduler function introduced in Chapter 1. For a
static analysis tool, this looks as if a function pointer and a closure are passed to a function
and then stored in memory. The actual event, a timeout or IO interrupt, cannot seen by the
tool and, as a result, the call of the callback is not analyzed.

These different parts of a scheduler system have to be taken into account:

TaskIdentifier scheduler_add(callback, closure) —Adds the callback and the closure to a
queue. Returns an identifier of this task.

scheduler_cancel(task_identifier) —Removes the callback associated with this task iden-
tifier from the queue.

scheduler_run() —Starts the event loop which then invokes the callbacks.

callback(closure) —The actual execution of the callback when some event occurs.

The perfect model would take the scheduler_add and scheduler_cancel function into ac-
count. Consequently the callback function should only be analyzed when cancel is not
going to be called. This kind of precision has not been achieved yet in this thesis; the ap-
proach taken for this thesis is described in Chapter 5. There are ways to improve this as
shown in Chapter 8.

3.1. Bugs Expected to Find

Static analysis can find the kinds of bugs mentioned in Chapter 2. In this section I outline
some examples of typical bugs that are not normally found in combination with scheduler
callback functions. They can, however, be found using the method explained in this thesis.

1 int scheduler_add(void (*task) (void *closure), void *closure);
2 void scheduler_run();
3

4 void callback(void* closure) {
5 free(closure);
6 }

9



3. Expected Results

7

8 int main() {
9 void* m = malloc(sizeof(int));

10 scheduler_add(&callback, m);
11 free(m);
12 scheduler_run();
13 }

Listing 3.1: Double free bug

It is, for example, undefined behaviour when one block of memory that has been allocated
using malloc() is deallocated twice using free(). Listing 5.2 shows such a bug. A
callback is registered with the scheduler_add() function and the closure is deallocated
directly afterwards. As soon as this callback is executed, the closure is deallocated a second
time.

Furthermore, wrong casts of the void* closure pointer should be detected in the call-
back function. Sections 4.1.2 and 4.2.2 will show that the capabilities of the tested tools are
limited in this respect. There is one version that is supported. Listing 3.2 shows a read in
uninitialized memory by casting the pointer to a struct with a bigger size. Due to the
way Clang tracks memory usage, this problem is found.

1 int scheduler_add((*task) (void *closure));
2 void scheduler_run();
3

4 struct A {
5 char a;
6 }
7 struct B {
8 long b;
9 }

10

11 void cb(void* m) {
12 struct* b = (struct B*) m;
13 printf("%i", b−>b);
14 free(m);
15 }
16

17 int main() {
18 void* m = malloc(sizeof(struct A));
19 scheduler_add(&cb, m);
20 scheduler_run();
21 }

Listing 3.2: Wrong struct size

These test bugs will also be used throughout this thesis to test the effectiveness of the
analyzed methods.

10



4. Static Analysis Tools

Model checking techniques and static analysis tools have the same general goal of find-
ing programming errors. The approach is very similar by analyzing the possible program
flows. There is, however, a methodical difference. While model checking is based on gen-
eral mathematical proofs, static analysis provides generic checkers for common bug types.
The first approach is often more complex, because preconditions and postconditions have
to be explicitly defined for the given program. All bugs that can be inferred under these
conditions are guaranteed to be found: this is called soundness. Then it is proven that
the postconditions hold. As a drawback the modelling sometimes has to be simplified
for more complex programs. This reduces the precision of the method and possibly de-
clares a program as safe when it still contains a critical bug. On the other hand, static
analysis can directly start with the analysis of source code without the need for special
modelling. Common assumptions and assertions are built into the analysis tool. These
tools are often optimized for a low false positive rate rather than soundness. For non crit-
ical programs, static analysis is the way to go. When hard proofs for the correctness of a
system are needed then the model checking is inevitable. It is important to create a suffi-
ciently detailed model.[6] In this thesis, the analysis of the two tools Coverity and Clang
has been evaluated. Both tools do not give hard proofs of correctness with their analysis
as it is possible with the Model checking approach from Chapter 2. For that, special pre-
and postconditions would need to be written for every specific program. Instead, the two
tools implement general checkers that only check constraints that need to hold for every
program. For example, each block of memory that is allocated using malloc() needs to
be deallocated with a respective call to free(). Both tools perform an flow sensitive and
interprocedural analysis.

Another type of checking tool is Cppcheck which does not look at the control flow, it is
context insensitive and intraprocedural. It only finds common programming errors inside
of a function but cannot do further analysis. In contrast to Coverity or Clang, no call graph
is computed but only a static abstract syntax tree. Values of variables are only tracked
by assigning possible values statically to the Abstract Syntax Tree (AST). Its design is ex-
plained in [7]. Cppcheck helps to find many simple bugs, but it is not sufficient for analysis
involving function pointers.

4.1. Coverity

Coverity is a static analysis tool that has been developed at Stanford university by Dawson
Engler. He wrote the original paper [8] about the static analysis checks in 2000. Later he
cofounded the company Coverity with some of his students in order to commercialize

11



4. Static Analysis Tools

the product. It is widely used and offers free analysis to opensource software [9]. The
commercialization had a huge influence on the further development. The analysis had to
be accessible to companies without too much academic background. Therefore the bug
reports had to be simple. There were even some kinds of error checking removed because
they would not offer useful information to an average developer [10].

4.1.1. Extendable by Models

Coverity needs information about library functions to be able to infer what they do. Mod-
els for most standard libraries are already shipped with Coverity. For example, the stan-
dard malloc() call has a default model which calls __coverity_alloc__() to tell
Coverity that memory is allocated by this function. Listing 4.1 shows this model from the
Coverity source code1. From this model, Coverity can derive that the return value is It
sees these two options because The success variable is not set to any value, therefore
Coverity derives that either a null pointer or a pointer to memory on the heap is returned.
Coverity can then check that whether free() is called when a pointer to memory has
been returned.

1 void *
2 malloc(size_t size) {
3 int success;
4

5 /* 1. Sinks if size is negative */
6 __coverity_negative_sink__(size);
7

8 /* 2. Returns a pointer to newly allocated memory block of size "size",
9 * or NULL otherwise.

10 */
11 if (success)
12 return (void*)__coverity_alloc__(size);
13 else
14 return NULL;
15 }

Listing 4.1: Coverity malloc() model

This modelling approach is not only available internally to Coverity but it is also exposed
as an interface to the user[11]. This interface is used in Chapter 5 to create a model to tell
the analyzer more about the source code behaviour. This model is shown in Listing 5.3.

4.1.2. Restrictions of Coverity

Coverity does not track the values of all variables or function calls. The heap and vari-
able aliases are not modelled for the complete program, but heuristics are used to find
possibly problematic sections [6]. There are some restrictions that arise from this: nor-
mally the static analysis can build a call graph through calls of function pointers such as

1cov-analysis-linux64-6.0.3/library/generic/libc/all/all.c
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(*(&fun))(NULL). However, when the function pointer is assigned to a local variable
first void (*pointer)(void*) = &fun; and then called via (*pointer)(NULL)),
it is no longer part of the call graph. This also applies when a function pointer is used as
an argument to a function, the call of this pointer is not tracked since the function pointer
is stored in the argument variable.

The models for Coverity work quite well for the intended use cases, such as modelling
a library function. Complex scenarios pose a problem: when modelling a function that
has arguments with user defined data types and includes multiple header files, all these
headers have to be included in the model file as well. Furthermore, Coverity does not
define default macros as the GCC compiler. For example #define __UINT8_TYPE__
unsigned char, which is used by linux headers, has to be defined by hand in order to
compile the model.

Another problem occurs when a model for function pointers has to be created. There is a
special construct that supports this, however, only one function can be linked to this model
as pointed out by the Coverity support in Appendix C. That is why it is not possible to use
the function pointer for multiple functions. The model is more like an alias to the actual
function.

As a result of not modelling the heap, Coverity does not always detect reading of unini-
tialized memory. The example bug in Listing 4.2 is not found. The printf() in Line 13
reads the variable d->b which is not initialized as there is only one integer in the smaller
struct One.

1 struct One {
2 int a;
3 };
4

5 struct Two {
6 int a;
7 int b;
8 };
9

10 struct One *c = malloc(sizeof(struct One));
11 struct Two *d;
12 d = c;
13 printf("%i", d−>b);

Listing 4.2: Different struct sizes

There is another problem that arises from the limited value tracking of variables. Coverity
does not detect when two pointers point to the same memory block. When Listing 4.2 is
extended by free(d);free(c);, then this is not detected as a bug. The memory block
is freed twice, but Coverity only sees that two different variables are freed.

4.1.3. Commandline Usage

The Coverity analysis is started from the command line. The commands are straight for-
ward. A Coverity model is created from a C-file and is stored in a special XML format.
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In a second step, the build process is monitored by Coverity and it creates information
files about it. Next, the analyzer engine is executed under usage of the previously created
model file. At the end, the number of bugs found is shown. As a final step, these can be
committed to the Coverity web interface, where the bug reports can be viewed and further
processed.

cov-make-library -of usermodel.xmldb usermodel.c
cov-build --dir $i/.cov/ make install check
cov-analyze --dir $i/.cov/ \

--user-model-file usermodel.xmldb
cov-commit-defects --host localhost --stream $stream \

--user admin --dir $i/.cov/

4.2. Clang

Clang Static Analyzer (henceforth referred to as Clang) is a compiler frontend to the LLVM
Compiler Collection. Clang builds an Abstract Syntax Tree (AST) using the compiler fea-
tures of LLVM. It saves the state of each variable using an abstract memory model and
then uses it for symbolic execution during analysis. In contrast to Coverity, there is no
static call graph structure, but every possible execution path is simulated. All this does not
find any bugs yet. However, this is the framework for the actual checkers that are written
as modules for Clang. By using this modular approach, Clang can be easily extended by
writing custom checkers. The Clang documentation at [12] shows how this can be done.
During the path traversal each checker is informed about the current state. In this thesis I
do not explore this feature; as mentioned in Chapter 8 it is left as future work.

In contrast to Coverity, Clang precisely tracks the memory allocations and variable assign-
ments throughout the whole analysis. Coverity uses a much less in-depth method for this
process. This supports the aim of Coverity to be fast at the analysis. Dawson Engler’s re-
search at Stanford University [6] showed that this is not necessarily a drawback in respect
to bug finding precision.

The goal of Clang is to track the value and refinements of variables. A simple value store
per variable could be used like:

Environment = V ariable→ V alue

This is not sufficient for the flexible memory model of C. By the use of pointers, the lan-
guage allows multiple variables to point to the same data. So when one variable is edited,
Clang has to infer the change of the other as well. In short, variables need to map to loca-
tions, which then contain the actual abstract data representation.

Environment = V ariable→ Location

Store = Location→ V alue
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In the actual implementation, another model is used that can simulate the C syntax pre-
cisely. This advanced memory model is called region based memory model and is de-
scribed in [13].

Environment = Expr → SV al

Store = Region→ SV al

A SVal can either be a memory location a concrete value, or a symbolic value. Symbolic
values are needed for the arguments of a function. The actual value is only known later
during the analysis run. Therefore the value is first stored as a placeholder. All further
expressions containing this value are symbolic as well. For example, when the symbolic
value of x is multiplied by 2, then the result would be stored as a SymIntExpr object that
references the symbol of x and the integer 2.

The Environment contains all expressions that occur in the source code. Each of them has
an associated unique SVal object. For example the SVal object for the expression 2 would
reference a ConcreteInt object with the value of 2. For variables, a distinction has to be
made between usage as locator value (short lvalue) and value of an expression (short rvalue)
[1, p. 46]. The SVal object associated to lvalue usage always references a memory region.
The rvalue can be a memory region or some kind of value. For example a pointer would
have a memory region as rvalue, whereas an integer has a symbolic or concrete value as-
signed. Clang does not always know concrete values, but it can infer constraints on the
value. An if construct can give additional information to the analyzer. For example, the
following code tells that x is greater than 0 in that branch: if (x > 0) then foo(x);.
This value is then stored as a SymbolVal. All the possible datatypes in Clang are docu-
mented in [14].

Memory regions can also be symbolic, similar to symbolic values, if there is no information
about it yet. When the value of a variable is needed, then the Store is queried for the
associated Region. Each region saves some information, such as size and location. The
location is hierarchically implemented. There are base regions, such as stack and heap
space. Furthermore, each array region has sub regions for each element. This way, each
element has a distinct SVal and also knows that it belongs to an array. This is, for example,
useful for checking out of bound conditions.

4.2.1. Different Checkers

The call graph and variable tracking described in the previous section, cannot find any
bugs yet. Clang first has to know which program flows it should mark as problematic.
This is what checkers are for. Checkers are implemented specifically for one kind of bug.
They have access to the data structure that Clang has built. This information is then used
to find common programming errors. There are different kinds of checkers. Core checkers
test for common errors such as “division by zero” or “null dereference”. There are also
platform specific checkers for Unix that test for correct usage of malloc() and free() in
order to prevent “double free” and “use after free” problems. Furthermore, there are OSX
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specific checkers that test for correct usage of the Cocoa API. There are also some useful
checkers that are still in an alpha phase.[12]

For example, Clang has a checker that can analyze wrong usage of variable casts. The
“CastToStruct” checker detects when a pointer that does not refer to a struct is cast to a
pointer that does. The “BoolAssignment” checker ensures that only values of 0 or 1 are
assigned to a boolean variable. In addition, the core “NonNullParamChecker” detects
when memory is read that has not been allocated yet. For struct allocation, there is also
a “CastSize” checker for assuring that malloc() is called with the correct size, that is a
multiple of the struct size.

4.2.2. Restrictions of Clang

The checks work in general; however, most of the pointer related checks do not work when
the pointer is cast to a void pointer in between. For example, the “CastToStruct” does not
complain when an int* is cast to a void* pointer and then to a pointer to a struct. The
only check that still works through void casting, is the “NonNullParamChecker”. List-
ing 4.2 shows an example with two structures of different sizes. Clang does not detect
anything wrong at Line 12, but only at Line 13 when the function tries to read memory
that has not been allocated before. This works because Clang has a very exact memory
model that stores the sizes of all allocated memory regions.

When analyzing bigger projects like GNUnet, the “CastToStruct” checker crashed Clang
at the time of writing. It is still marked as alpha, so it may well work in the future.

The main drawback of Clang is that it does not support analyzing across translation units.
When a C project consists of multiple TUs, a separate Clang process is executed for each of
them. No data is shared between those instances. There is a script called “scan-build” that
combines the resulting reports of these instances and creates an index list. It also removes
duplicates that can arise through bugs in header files 2. One possible solution on how this
can be mitigated is shown later in Chapter 6

4.2.3. Commandline Usage

There are different ways to start the analysis with Clang. Single source files can be ana-
lyzed with the clang command.

clang --analyze -Xanalyzer -analyzer-output=html test.c

With this command, the reports are output as html files. Different checkers can be activated
or deactivated.

There are also some commands that can improve the precision of the analysis, but they
also increase the analysis time. The following max-nodes argument tells Clang to stop

2http://llvm.org/bugs/show_bug.cgi?id=16809#c2
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analyzing longer paths. So it can learn more about the call graph and use this information
for the analysis.

clang --analyze -Xanalyzer -analyzer-output=html -Xanalyzer \
-analyzer-stats -Xanalyzer -analyzer-config -Xanalyzer \
max-nodes=300000 -I . -I ../libevent/include/ -I ../libevent/ \
total-d.c -o ./outputhtml-togetherd10

For scanning a whole project, Clang offers the scanbuild command3, which is compara-
ble to the Coverity cov-build, and cov-analyze commands. The options are similar
to the clang command; however, there are some slight differences.

scan-build -enable-checker alpha.core.CastToStruct -plist-html \
-analyzer-config max-nodes=300000 gcc test.c

The report can then be viewed with the scan-view command. A browser is automatically
started with the index page of all bug reports that have been created.

4.3. Comparison

Coverity and Clang both yield similar results. They find errors like division by zero or
problems with heap allocated memory. Due to the differences in their architecture, they
have different usage scenarios: Coverity is trimmed for speed, at the cost of its soundness,
so that it can be invoked on a regular basis, for example for every commit, to find bugs
quickly. This is achieved by a more shallow analysis of the programs execution and good
heuristics. Only program parts with possibly problematic constructs are analyzed [15].
Clang, on the other hand, has a very precise memory model and call hierarchy and looks
at every possible path in the program. Each checker is informed about all the execution
steps and can use the information for its analysis.

Coverity has limited ability to reason about values that are stored in variables. The actual
content is not stored for any kind of pointers. Because this was needed for this thesis, it
was necessary to use Clang for the analysis as well. The restriction on inter translation unit
analysis of Clang can be circumvented with some work which is discussed in Chapter 6.

The amount of documentation available differs as well. As a commercial software, Cover-
ity has an extensive and cleanly structured online documentation. Clang, on the other
hand, has less information available, probably due to its open source nature with multi-
ple independent developers involved. The homepage offers a good overview and some
information about possible use cases. However, it is often necessary to look for further
information in the mailing list archives or the documentation generated from the source
code. For both tools, Coverity and Clang, there are some papers on the actual implemen-
tation that have been referenced throughout this chapter.

3http://clang-analyzer.llvm.org/scan-build
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The problem with the analysis of asynchronous events is that they can occur at an arbi-
trary point in time. As a result, the static analyzer tool does not know when this callback
function will be executed. In a dynamic execution this can actually happen at different
points in time depending on when the event fires. Hence, in static analysis this dynamic
behaviour cannot be modelled, because each analysis run has to be deterministic. In the
beginning I planned to let the static analyzer save the events in the queue. However, this
was soon discarded as neither Coverity nor Clang were able to track function pointers or
other data in global variables over multiple functions.

For this thesis, a simplified model of execution was chosen: the actual execution of the call-
back function already occurs when the event is added to the eventloop queue. Figure 5.1
shows the simplified execution order. There are no longer any events that need to happen.
In order to change the behaviour of the add function, several approaches have been taken
and will be explained in the following.

scheduler_add()
task id

external event

callback()

scheduler_run()

main scheduler callback

callback()

scheduler_add()

scheduler_run()

main scheduler callback

Figure 5.1.: Changed event callback
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This simplified model for adding callbacks could potentially produce more false positives
because the scheduler_cancel() function is not taken into account. Listing 5.1 shows
a code where no “double free” bug occurs. However, the static analysis does not know
that the task is cancelled and thus it infers that the pointer is freed twice.

1 void callback(void* closure) {
2 free(m);
3 }
4 void main() {
5 void* closure = malloc(1),
6 int task_id = scheduler_add(&callback, closure);
7 free(closure); // ok since the task is cancelled
8 scheduler_cancel(task_id);
9 scheduler_run();

10 }

Listing 5.1: False positive

This chapter explores how this analysis can be done with Coverity and Clang. The tests
were executed with the sample programs GNUnet and libevent. The obtained results are
then shown in Chapter 7.

1 int scheduler_add(void (*task) (void *closure), void *closure);
2

3 void callback(void* closure) {
4 free(closure);
5 }
6

7 int main() {
8 void* m = malloc(sizeof(int));
9 scheduler_add(&callback, m);

10 free(m);
11 }

Listing 5.2: Double free bug

5.1. Use Model for Coverity

The commercial Coverity analysis tool offers a built-in method to change the behaviour of
certain functions. These models are source code files that contain a redefinition of the orig-
inal function. During the analysis run this model can be passed to Coverity. Its intended
use case is to teach Coverity how certain library functions behave where the source code
is not available. However, it is also a viable solution for the problem at hand.

This approach was tested with GNUnet. Listing 5.3 shows a model for the scheduler func-
tion that adds a callback to an event queue. A Coverity model is just a normal C-file with
a function definition that is used during analysis instead of the original one. Modelling
the scheduler function was difficult because it uses datatypes that are specific to GNUnet.
When Coverity parses a model file, it does not define default datatype macros like GCC.
For example #define __UINT8_TYPE__ unsigned char has to be defined manually.
After adding all necessary includes, the model can be parsed.
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1 GNUNET_SCHEDULER_TaskIdentifier
2 GNUNET_SCHEDULER_add_now (GNUNET_SCHEDULER_Task task, void *task_cls) {
3 struct GNUNET_SCHEDULER_TaskContext queue_macro_tc;
4 queue_macro_tc.reason = 0;
5 (*task)(task_cls, &queue_macro_tc);
6 GNUNET_SCHEDULER_TaskIdentifier a = 1;
7 return a;
8 }

Listing 5.3: Scheduler model for GNUnet

Implementing this model in Coverity did not yield the expected result. No additional bugs
or false positives were found. This leads to the conclusion that Coverity is not able to store
function pointers in variables and that they cannot be passed to the model function. This
prevents Coverity from generating the complete call graph.

5.2. Patching the Source Code

As the model approach did not work, another method was needed. There is one possible
way to call a function pointer that Coverity understands: it has to be called directly via
(*(&handler))(data);. So instead of having an external model file, the source code of
GNUnet was patched. The function call to the scheduler was replaced with a macro func-
tion that directly executes the callback. That way there is no need for storing the function
pointer in a variable. Listing 5.4 shows the necessary macro function. As a result, the out-
put of the preprocessor only contains calls to the scheduler function that are supported by
Coverity. Coverity can now analyze calls to the scheduler function. To see which bugs are
found by this method, the analysis was first started without the patch and then again with
the patch applied. The additional bugs could then be related to the improved analysis of
the scheduler function.

1 static struct GNUNET_SCHEDULER_TaskContext queue_macro_tc;
2 static GNUNET_SCHEDULER_TaskIdentifier task_identifier = 1;
3 #define GNUNET_SCHEDULER_add_now(task, task_cls) ( \
4 queue_macro_tc.reason = 0, \
5 (*(task))(task_cls, &queue_macro_tc), \
6 task_identifier \
7 )

Listing 5.4: GNUnet scheduler macro function

5.3. Analysis with Clang

Clang does not support a model mechanism like Coverity. Therefore, the only possibility
is to change the source code itself. This patch works like the Coverity model by calling the
callback directly and not putting them in a queue. Alternatively the macro function from
Listing 5.4 could be used as well.
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The patch for GNUnet is shown in Listing 5.3, the “scheduler.c” file has been changed. It is
the same code a used before in the model for Coverity, the callback function task is called
directly. The Clang analysis engine can then trace the variable propagation to the callback
function.

5.4. Problem

A drawback of Clang is that it can only consider one translation unit at a time. This means
that function calls are only followed inside of one file. When a function of another file is
called, then the analyzer cannot use this information for its analysis. There are some bug
reports for Clang that ask for this feature, but as of now there are no plans to implement
this 1. This feature is also necessary for this approach, because the scheduler function is
typically in a separate file. As a result, Clang fails to reason about the callback functions
even when the patch to the scheduler function is applied. The separate file is a barrier to
the analyzer.

In order to solve this problem, the function for adding an event to the scheduler has to be
in the same translation unit as the calling function. The first approach to solve this was to
implement the function in the header file, then each translation unit has its own scheduler
function. This already increases the amount of analysis that can be done. However, this
does not work when the calling function wants to add a callback function from another
file to the scheduler. Then the same restriction applies: when Clang analyzes the calling
function, it can only follow the call to the scheduler function. Next, it does not know about
the definition of the callback function at that time and cannot follow it anymore.

5.5. Aggregate Multiple Source Files

The chosen approach in this thesis is to combine all translation units (TU) into one. The
previous approach only combined the scheduler function with each source file separately.
The basic idea is to have one global TU for the static analyzer to look at, so it has all
the function definitions during the analysis and can use the knowledge for analyzing the
complete program flow.

After aggregating the source files, inter translation unit function calls can actually be
tracked. However, this technique is not yet fully automated. The following Chapter 6
shows the approach taken for this thesis. By applying this technique, the static analyzer
is able to analyze callback functions and their corresponding closure. The results obtained
are shown in Chapter 7.

1http://llvm.org/bugs/show_bug.cgi?id=16809#c1 and http://llvm.org/bugs/show_bug.
cgi?id=18209#c1
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As described in the previous chapter, Clang cannot track function calls over multiple
Translation units. The tool can only analyze on a file by file basis. However, the func-
tion that handles event callbacks is usually in a separate file or even in a separate library
like libevent. Also the callbacks can be in a different file. The solution is to combine all the
necessary files into one huge C-file and run the analyzer on that. However, in contrast to
recent languages as C# or Python, C relies on the separate files to model private members
(variables, functions and data structures). By combining multiple files, all of these private
members get into conflict with each other because they are now visible to every function
in the program. It is no longer possible to have private members.

The solution chosen for this thesis is to rename all the static members with a prefix so that
every C-file regains its private members for itself. The cleanest method would be to write
a C parser to find the uses and semantics of all identifiers, but for the sake of simplicity the
method used here employs regular expressions for the renaming process.

The following describes the usual build process for the Automake build system and which
problems have to be taken care of so that multiple files can be combined into one.

6.1. Structure of Automake Files

The script that handles the renaming process only supports the GNU Automake system.
These have a more structured way and can be more easily read than regular Makefiles
because Automake abstracts all the platform specific code away. This section is a short
introduction to the format of Makefile.am files.

Automake files have a simple base structure. All data is defined as variables. Some vari-
ables have a special meaning and get interpreted by the Automake program. Other cus-
tom variables can be defined by the user. Also simple control flow structures with if are
supported. Listing 6.1 shows how a small Makefile.am could look like. The variable
ending with “_PROGRAMS” defines which programs should be compiled. A program
has a list of associated source code files. The variable ending with “_SOURCES” defines
the source files associated with one program, where the first part of the variable is the pro-
gram name. Other variables exist for documentation. Furthermore, different methods to
structure the Makefile in different files are supported. The first method is to have separate
Makefile.am files in each sub directory and to reference them with the SUBDIRS vari-
able. The second method is to include files with the include command. This way all the
variables of the included files propagate to the main file. [16]
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1 SUBDIRS = src/util
2

3 bin_PROGRAMS = hello
4 hello_SOURCES = main.c
5

6 include src/doc/include.am

Listing 6.1: Sample Makefile.am[16]

6.2. How Normal Builds Work

The compilation of C-files is a multi-step process as shown in Figure 6.1. First the file
gets preprocessed by the preprocessor, and macros are expanded. Also in this step, the
included header files are inserted. Next the c-file gets compiled by the compiler (gcc or
clang) and converted into an object file. So far the process happens independently for each
file. As soon as all the files for an executable have been compiled, they will be linked
together by the linker program. This replaces external function and variable references
by the actual position in the resulting object file. During this process, the program gets
linked with external libraries as well. This step can fail when some symbol that has only
been declared but never defined is not found. This can be due to some library that was
forgotten to add to the link process.

Preprocessor Compiler Linker

Figure 6.1.: Compilation process

6.3. Aggregating TUs

As described earlier in Section 5.5 the concept of multiple files in C enables a private scope
per file. Only the public interface can be accessed by other files and this feature gets lost
with the aggregated file. Another problem is posed by the fact that every header now only
gets included once. Some projects like Tor use macro defines to enable certain parts of a
header file, like internal data types. A problem arises if the file gets included normally the
first time, and the second time in the extended mode. It is common practice to prevent
multiple inclusions of a header file via a #ifndef macro construct called header guard.
On first normal inclusion, the header guard is activated, then the second time when the
macro for the extended mode is set, the internal data types are not included. To circumvent
this, the defines have to be set before starting the compilation.

When there is only one source file, then there is no need to link the object files together as
all own files are combined in one. However, the result still has to be linked to library files.
When a library should be analyzed as well, it has to be aggregated as well. For example,
this is necessary to analyze projects that use the libevent library.
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6.4. Parsing Makefile.am

Automake is a platform independent abstraction of the normal Makefile. For my purpose
of aggregating multiple source files, this format is easier to parse as it is more structured
and does not contain platform specific code.

The language chosen for this purpose is Python. It is a simple language that has some
powerful programming constructs. It also offers good support for regular expressions
that I use for parsing the Makefile and later on also C-files. The whole script is shown in
Appendix A.

In the Makefile syntax, lines can be continued with a backslash. Listing 6.2 shows an ex-
ample. My script wraps the Python readline function, so by using this function, the actual
algorithm does not need to care about line continuation. Also the include command is
directly implemented here. The Automake file is set up with different macros and is de-
scribed with environment variables. Each line either defines a variable or contains some
basic control flow command. The variables can also be used to define new variables.

1 noinst_PROGRAMS = \
2 gnunet−config−diff
3

4 noinst_PROGRAMS += $(W32CAT)
5

6 W32CAT = w32cat

Listing 6.2: Makefile.am variables

Variables are assigned with the = operator. In addition, an append operator += is sup-
ported as well. Variable values can be used to define new variables using the $() opera-
tor. The variable assignment uses lazy evaluation. This means that only when the variable
is used, the value of the variables on the right hand side are evaluated. In the example
in Listing 6.2 the value of noinst_PROGRAMS is “w32cat” when the variable is used by
Automake.

6.4.1. Control Flow Conditions

In the standard setup with the configure script and Automake, different variables de-
termine the build process. These variables are then saved in the config.status file. The
script parses this file and adds the necessary flags to the environment before beginning
to parse the Makefile.am. This means that the configure script has to be run before the
aggregation.

Automake supports basic if-else structures which test if a given variable is set or not. Due
to the macro nature of Automake, the encoding of these status variables is not straight
forward. Listings 6.3 to 6.5 show the transformation of an Automake if clause to an equiv-
alent statement in the Makefile. The necessary variable with a _TRUE and _FALSE ending
are stored in the config.status variable. VARIABLE_TRUE= and VARIABLE_FALSE=#
mean, for example, that the if block is executed and the else block is commented out. The
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script for this thesis does not apply macros as Automake does, but instead it directly inter-
prets the if statement and ignores branches that would be commented out.

1 if TEST
2 noinst_PROGRAMS = test
3 else
4 noinst_PROGRAMS =
5 endif

Listing 6.3: Control flow in Makefile.am

1 @TEST_TRUE@noinst_PROGRAMS = test
2 @TEST_FALSE@noinst_PROGRAMS =

Listing 6.4: Automake result

1 noinst_PROGRAMS = test
2 #noinst_PROGRAMS =

Listing 6.5: After configure.sh when TEST is true

The programs and source variables are then used to generate a list of files. Then all file con-
tents are simply concatenated into one file by applying the variable renaming algorithm
described in the next section.

6.5. Prevent Naming Conflicts

The next step is to prevent identifier name conflicts. These occur because there is no sep-
arate scope per translation unit anymore when all the source files are aggregated. My
pseudo-parser works by distinguishing between public and TU local identifiers. All pub-
lic identifiers have to be declared in a header file, otherwise they cannot be accessed from
another file. All variables and functions that are declared with the static keyword have
a scope limited to the TU. This means they are only accessible from the current file and
cannot be part of the public interface[1, p. 30]. The static declarations are detected by a
regular expression. For the declarations this works well because the static keyword can
be reliably detected. The actual renaming of occurrences of the function name is more dif-
ficult as the same string could also be present in, for example, a structure definition. Some
more complex regular expressions have been used to filter this out. But the algorithm still
cannot detect all possible cases that are allowed by the C-standard. A real parser would be
necessary to solve this. Data types, such as structures, enumerations, and unions, are not
declared static and consequently more difficult to detect. I analyze the included header
files and look for the structure identifiers there. All structure definitions that are not found
in the header files are then considered to be local to that file.

After all the occurrences have been found, the actual renaming is the same for all identi-
fiers. It is important that all occurrences are found, because otherwise the program will not
compile anymore; this is ensured by the regular expressions below. The goal for the renam-
ing algorithm was to have unique names for each local variable. Therefore, the file name is
used as a prefix for the identifier. For example, int counter = 0; in the file “src/net-
work/protocol.c” would get renamed to int src_network_protocol_c_counter =
0;. This is not an identifier that would be used in a program so there are no new naming
conflicts introduced by this naming scheme. Another way is to hash the file path, but this
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removes the traceability from the bug report. With the first method it is possible to see
which file an identifier belongs to.

Identifiers in C only allow a restricted amount of different characters [1, p. 51]. The regular
expression syntax of Python is used here for the peudo parser. The identifiers can be
modelled with a regular expression as follows:

(?P<identifier>[a-zA-Z_][a-zA-Z_0-9]*)

It may only start with a non-numeric letter, followed by any alphanumeric character. The
bounds of any identifier in the document are then defined by an arbitrary other character.
All the following regular expressions are based on this identifier pattern. For the different
use cases like function or variables, different restrictions have to be used on the text before
and after the identifier.

6.5.1. Renaming Data Types

The regular expression to represent structure and other data types is the same as for a
normal identifier, there is only a prefix prepended, separated with one or more spaces.

(?P<identifier>(?:enum|struct|union)\s*[a-zA-Z_][a-zA-Z_0-9]*)

(?P<identifier>(?:enum|struct|union)\s*[a-zA-Z_][a-zA-Z_0-9]*)\s*
(?:\{|;)

This regular expression finds all structure declarations and definitions. It starts with the
identifier part from above. Then, after the identifier, either a semicolon has to follow for
a declaration or a curly brace for a definition. Due to the struct keyword this detection
is very reliable and does not cause any problems during parsing. Next, all data struc-
tures that have not been defined in any header file are renamed. The renaming of all the
occurrences is straight forward as well as discussed earlier.

6.5.2. Renaming Variables and Functions

As a next step, all variables and functions that are defined as static will get renamed. The
corresponding regular expression searches for all static keywords at the beginning of a
line. Otherwise also static variables inside of functions would be matched, but which do
not need to be renamed. The next part is the data type of the variable. The same characters
as for identifiers are allowed. A star character is also matched for pointers. Then follows
the expression for the variable name. There are different possibilities for the final part that
delimits the identifier. If it is a variable definition then it can end with a semicolon, an
equal sign, when a value is assigned directly, or a square bracket for arrays. A function
identifier is always delimited by an opening parentheses.
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\nstatic[\sa-zA-Z_0-9]+(?: |\*|\n)+(?P<identifier>[a-zA-Z_]
[a-zA-Z_0-9]*)\s*(?:;|=|{|\[|\()

In order to find the usage occurrences of the static variables or function, the following
regular expression is used:

(?P<before>(?<=\-[^_a-zA-Z\.\>]|[^\-][^_a-zA-Z\.]))(?P<identifier>
[a-zA-Z_][a-zA-Z_0-9]*)(?P<after>[^a-zA-Z_0-9])

The first part ensures that only variable occurrences are found and not members of struc-
tures which could have the same name. The members are either accessed by a dot or by
->, so these cannot be in front. The end of the variable name is delimited by any character
that is not valid in an identifier.

6.6. Encountered Problems

There was one kind of macro from libevent that caused problems with the renaming script.
Listing 6.6 shows a macro function that takes a type as parameter. Inside the macro body,
this type is prepended with struct. When my renaming algorithm wants to find all oc-
currences of struct evmap_signal, it does not detect the usage in this macro function
as only the term evmap_signal is used in Line 4. To fix this, I excluded these structures
from renaming.

1 #define GET_SIGNAL_SLOT(x, map, slot, type) \
2 (x) = (struct type *)((map)−>entries[slot])
3

4 GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal);

Listing 6.6: Libevent macro

Another problem occurred when compiling Tor. Some headers only execute declarations
when a special macro definition is set. For example, the header file in Listing 6.7 requires
#define ADDRESSMAP_PRIVATE to be defined in the source file that includes the header.
In order to ensure that always all parts of the header files are included, these macro defi-
nitions are passed to the compiler via the -D flag.

1 #ifdef ADDRESSMAP_PRIVATE
2 typedef struct virtual_addr_conf_t {
3 tor_addr_t addr;
4 maskbits_t bits;
5 } virtual_addr_conf_t;
6

7 STATIC void get_random_virtual_addr(const virtual_addr_conf_t *conf,
8 tor_addr_t *addr_out);
9 #endif

Listing 6.7: Tor header “src/or/addressmap.h”
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In some GNUnet source files there are members of structs and functions that have the
same name. Listing 6.8 shows an example. When renaming the function, it has to be en-
sured that either all occurrences of the member identifier are renamed as well, or none. For
this example it would work to make the renaming regular expression from Section 6.5.2
more general and rename all occurrences. However, there are also header files with struc-
ture definitions that cannot be renamed. So the only possibility is to not rename these
structure members. The uses of the member are easily detected, but it is more difficult to
check whether an identifier is inside of a structure definition. Therefore all structures are
analyzed in the beginning and the regular expression for renaming can then test whether
the current line is part of a structure and exclude it from renaming. Appendix D shows the
necessary commands for excluding these identifiers.

1 /**
2 * Connection to the NAMECACHE service.
3 */
4 struct GNUNET_NAMECACHE_Handle
5 {
6 ...
7 /**
8 * Reconnect task
9 */

10 GNUNET_SCHEDULER_TaskIdentifier reconnect_task;
11 // This would be prefixed as bysrc_namecache_namecache_api_c_reconnect_task
12

13 ...
14 }
15

16 static void
17 src_namecache_namecache_api_c_reconnect_task (void *cls,
18 const struct GNUNET_SCHEDULER_TaskContext *tc);

Listing 6.8: GNUnet struct

6.7. Drawbacks

While renaming is automated, manual intervention is still needed due to the shortcom-
ing of not using a parser. One solution would be to make the script significantly smarter
and practically turn it into a c-compiler of its own so that it understands the semantics
and can differentiate between different identifiers. As the current script is only using reg-
ular expressions in order to find identifiers, it cannot handle variables that get declared
in different scopes. This would also help to understand the functionality of macros. An
approach to solve this is outlined in Chapter 8

Furthermore, not all programming paradigms are supported at the moment. Different dy-
namic libraries like services in GNUnet that usually get included dynamically at runtime
cannot be examined by the method described here. To mitigate this, the loading of the
services would have to be programmed differently for this compile setup.
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7. Results

The approach described in Chapter 5 was first used to analyze the GNUnet project. The
libevent project offers a portable event loop functionality as a library for other projects.
Some projects were chosen for the analysis. Tor provides anonymous internet access and
uses the libevent library. tmux is an alternative to screen program and will be analyzed as
well.

7.1. GNUnet

First, Coverity was used to analyze GNUnet with the macro function mentioned in Chap-
ter 5. There was, however, no difference between the analysis with the patched scheduler
and without. Both scans resulted in the same amount of bugs found.

In order to test whether the approach works, a bug was introduced intentionally. Fig-
ure 7.1 shows one example of a Use After Free Bug. The plugin variable is passed
as closure to the scheduler function. After the callback execution, the variable has been
freed, and as a consequence the next usage of the variable is marked as a bug by Coverity.
This shows that Coverity was able to generate a Call Graph via the macro function for
GNUNET_SCHEDULER_add_select().

Figure 7.1.: Bug with incorrect scheduler function

As the first approach with Coverity models did not produce any new results, GNUnet was
next analyzed with Clang. The scheduler function of GNUnet, located in “src/util/sched-
uler.c”, was patched in order to gain a synchronous control flow for the static analysis.
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All source files of GNUnet were then aggregated using the script in Appendix A. After
executing Clang’s scan_build command, the effects of the patch could be observed.

Three additional bugs were found, but after examining them, they turned out to be all
false positives. It showed, however, that the method applied actually works. Figure 7.2
shows one of the bugs. The reason for the false positive was that Clang did not cor-
rectly consider the copying in Line 177631. The following scheduler call to _src_fs_
fs_publish_ksk_c_publish_ksk_cont detects a null pointer dereference. The long
function name results from the aggregation in Chapter 6. This is not a real bug, because
the condition in Line 171849 is true. The problem is that Clang does not know that pkc->i
is equal to zero. This false positive could be prevented by explicitly copying each field of
the structure instead of using memcpy().

Figure 7.2.: False positive with Clang

As a side effect of the source code aggregation, some minor mistakes were found as well.
In some header files the header guard was missing in GNUnet. The normal build process
succeeded nevertheless because those files were never included multiple times. As a result
of the aggregation, this posed a problem because multiple C-files included this header and
so there were redefinition errors.

Coverity is trimmed for speed as mentioned in Chapter 4 and was able to prove it in
my analysis. Checking GNUnet took about 10 minutes, whereas Clang needed about 20
minutes to analyze the aggregated source file.
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7.2. Libevent

Libevent is an opensource event notification library that is used in different projects like
Chrome, Tor, and tmux (an alternative to screen). It offers similar functionality as the
scheduler in GNUnet. Therefore it is also subject to the same problems with static analysis
tools. By applying the same approach as before, the idea is to find more bugs related to the
callback functions.

Libevent offers a structure for each event. Different kinds of events, such as timeouts or
IO callbacks, can be modelled in this structure. It is created with the event_new() func-
tion first, and then it is passed to one general event_add() function. The event_add()
function is then modified like the GNUnet scheduler function. Listing 7.1 shows the modi-
fication to the libevent library. The callback function is executed directly instead of adding
it to a queue. Because the callback function is stored in the struct event and not passed
directly to the scheduler function as in GNUnet, this means that Coverity cannot be used
for the analysis. As shown in Chapter 4, it does not track function pointers that are stored
in variables. Therefore, only Clang was used to analyze libevent programs.

As before, the event_add() function (corresponds to the scheduler function of GNUnet)
has to be in the same translation unit as the calling function. Otherwise Clang could not
follow the calls. Therefore the libevent library and the project that includes it are combined
into one single C source file which can then be analyzed.

First, a simple test program has been written to test whether this concept also works for
libevent. Then, the two opensource projects Tor and tmux have been analyzed. The results
are shown in the following.

1 int
2 event_add_nolock_(struct event *ev, const struct timeval *tv,
3 int tv_is_absolute)
4 {
5 struct event_base *base = ev−>ev_base;
6 struct event_callback *evcb = &(ev−>ev_evcallback);
7

8 switch (evcb−>evcb_closure) {
9 case EV_CLOSURE_EVENT_SIGNAL:

10 (*ev−>ev_callback)(ev−>ev_fd, ev−>ev_res, ev−>ev_arg);
11 break;
12 ...
13 }
14 }

Listing 7.1: Libevent patch in event.c

7.2.1. Simple Test Program

In a very simple test case, the patch that was applied to libevent could be analyzed using
Clang. The Listing 7.2 shows the simple program that was used. For brevity the libevent
interface definitions are not shown here.
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The main function registers a callback that gets triggered when an event on the file de-
scriptor occurs (in this example file descriptor 0). The callback function then does some
division operation with the passed data. In this test case, the passed value is zero, thus
the division yields a Division by zero error. During a normal run, the callback func-
tion callback() is called asynchronously with the closure data that was passed to the
event_add() function. Static analysis tools, like Clang, do not find this bug as they can-
not derive that the callback function is ever called with this closure value. The method
described previously to make this call synchronous tells Clang what is meant by this code
and enables it to draw a conclusion. As a result, the bug report contains the Division
by zero bug that was added on purpose. The graphical report in Figure 7.3 shows how
Clang was able to find the bug. This example shows that the method for patching libevent
and aggregating the source files, as developed for this thesis, is able to find bugs.

1 #include <event2/event.h>
2

3 void callback(evutil_socket_t e, short s, void * cls) {
4 int *i = (int*) (cls);
5 int b = 6 / *i;
6 printf("%i", b);
7 }
8

9 int main(int argc, char** argv) {
10 struct event_base *base;
11 base = event_base_new();
12

13 struct event *listener_event;
14 int a = 0; //origin of the bug
15 listener_event = event_new(base, 0, EV_READ|EV_PERSIST, callback, &a);
16 event_add(listener_event, NULL);
17

18 event_base_dispatch(base);
19 return 0;
20 }

Listing 7.2: Libevent sample program

7.2.2. Tor and tmux

The two open source project tmux and Tor have also been analyzed with Clang, but there
were no bugs found, not even false positives. Tor uses libevent only a few times, so those
were probably already well tested.
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Figure 7.3.: Division by Zero bug

35





8. Conclusion

I started out in this thesis wanting to be able to analyze event driven programs. I succeeded
in a way that I can now also follow program traces which involve asynchronous event
calls. However, this is done in a very simple way that does not cover all the cases. The
main drawback is that there is no real asynchronous call but a direct one. This also means
that the static analysis does not have any information concerning the circumstances of the
event. For example, the really hard bugs that involve race conditions with asynchronous
callbacks cannot be detected. Even so, it is an advantage over standard static analysis as
outlined in this thesis.

The method I used here should only be regarded as a prototype and is not ready for general
use. The main drawbacks are that many project specific adjustments have to be made. The
event loop in the source code has to be changed, and for Clang it is necessary to tweak the
renaming parameters for the project to compile as outlined in Section 6.6.

This concept can still be improved in future Bachelor or Master thesises. One way would
be to directly hook into the Clang compiler and do all the renaming and combining of
different files there. This has the advantage that macros and such can be treated according
to their true nature and not only by using regular expressions.

Another possibility would be to change the Clang Static Analyzer to also support multiple
translation units. This would offer the greatest flexibility as no more “precompiling” has
to be done.
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A. Aggregation Script in Python

1 #!/usr/bin/env python
2 """Parse Makefile.am recursively in the current folder and create one total c−file.
3 At the moment this only works for gnunet, with gnunet specific hacks.
4 """
5

6

7 import argparse
8 import re
9 import os

10 import string
11 import copy
12 import collections
13

14

15 def read_make_line(directory, makefile):
16 " returns the specified m_file line by line as a generator and concatenates lines with \\ at the end "
17 with open(os.path.join(directory, makefile), "r") as m_file:
18 while True:
19 line = m_file.readline()
20 # end of file
21 if not line:
22 return
23 # remove newline character
24 line = line[:−1]
25 # check if it is a normal line
26 if not line.endswith("\\"):
27 # check for included files and read them
28 if line.startswith("include "):
29 for r_line in read_make_line(directory, line[8:]):
30 yield r_line
31 else:
32 yield line
33 continue
34 else:
35 line = line[:−1]
36

37 # concatenate the lines
38 while True:
39 line_concat = m_file.readline()
40 if not line_concat:
41 raise Exception("Makefile.am is corrupted")
42 line_concat = line_concat[:−1]
43 if not line_concat.endswith("\\"):
44 line += line_concat
45 yield line
46 break
47 else:
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48 line += line_concat[:−1]
49

50 def interprete_makefile(directory, env, excluded_programs):
51 " expects a directory without trailing slash and a dictionary for environment variables"
52 if not os.path.isfile(os.path.join(directory, "Makefile.am")):
53 return []
54 if os.path.isfile(os.path.join(directory, "config.status")):
55 with open(os.path.join(directory, "config.status"), "r") as conf_file :
56 for line in conf_file:
57 define_re = re.match(r"S\[\"(?P<ident>[a−zA−Z_0−9]*)\"\]=\"(?P<value>[^\"]*)\"", line)
58 if define_re:
59 if define_re.group("ident").endswith("_FALSE"):
60 continue
61 elif define_re.group("ident").endswith("_TRUE"):
62 if define_re.group("value") == "":
63 env[define_re.group("ident")[:−5]] = "1"
64 else:
65 env[define_re.group("ident")] = define_re.group("value")
66 env.pop("LINUX", None) # needed for libevent
67

68 condition_stack = []
69 for line in read_make_line(directory, "Makefile.am"):
70 # ignore all statements in if blocks
71 if line.startswith("if "):
72 condition_re = re.match(
73 r’if (?P<negation>!?)(?P<variable>[A−Z0−9_]*)’, line)
74 result = (
75 len(condition_stack) == 0 or condition_stack[−1]) and condition_re and str(condition_re.

group("variable")) in env
76 if len(condition_re.group("negation")) > 0:
77 result = not result
78 condition_stack.append(result)
79 continue
80 elif len(condition_stack) > 0:
81 if line.startswith("endif"):
82 condition_stack.pop()
83 continue
84 elif line.startswith("else"):
85 condition_stack[−1] = not condition_stack[−1]
86 continue
87 elif not condition_stack[−1]:
88 continue
89

90 # search for environment variables
91 assignments_re = re.match(
92 r’\s*(?P<key>[a−zA−Z_0−9]*) *(?P<add>\+?)= *(?P<value>.*)’, line)
93 if assignments_re:
94 key = assignments_re.group("key")
95 value = replace_environment_variables(assignments_re.group("value"), env)
96 if assignments_re.group("add") == "+":# and key in env:
97 env[key] += " " + value
98 else:
99 env[key] = value

100 continue
101

102 files = []
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103 programs = []
104 cur_env = collections.OrderedDict()
105 for key in env:
106 # search for sub directories
107 cur_env[key] = env[key]
108 if key == "SUBDIRS":
109 for subdir in env[key].split():
110 # ignoring curdir
111 if subdir == ".":
112 continue
113 if subdir == "ats−tests":
114 continue # Hack to exclude tests
115 files += interprete_makefile(directory +
116 "/" + subdir, cur_env.copy(), excluded_programs)
117 continue
118

119 # search for _PROGRAMS and _LTLIBRARIES
120 program_re = re.match(
121 r’\s*(?P<progtyp>[A−Za−z0−9_]*)_(?P<type>PROGRAMS|LTLIBRARIES|DEPENDENCIES|

LDADD)’, key)
122 if program_re:
123 progs = env[key].split()
124 if program_re.group("progtyp") == "check":
125 continue
126 for program in progs:
127 programs.append(program)
128

129 # look for all source files
130 for program in programs:
131 if program in excluded_programs:
132 continue
133 for p_type in ["", "dist_", "nodist_"]:
134 key = p_type + re.sub("[^a−zA−Z_0−9@]", "_", program) + "_SOURCES"
135 if key in env:
136 for f_name in env[key].split():
137 f_name = os.path.join(directory, f_name)
138 if f_name[−1:] == "c" and not ’plugin_transport_template.c’ in f_name and not ’

plugin_transport_udp’ in f_name and not "plugin_transport_unix" in f_name and
not "plugin_transport_tcp" in f_name and not "/dv/" in f_name and not "psyc/"
in f_name and not ’gnunet−service−xdht’ in f_name and not ’gnunet−service−
set_union’ in f_name and not ’gnunet−service−set’ in f_name and not f_name in
files:

139 files.append(f_name)
140 return files
141

142

143 def replace_environment_variables(text, env):
144 "env: dictionary (key−>value)"
145 pos = string.find(text, "$(", 0)
146 pattern = re.compile(r’\$\((?P<key>[^\)]*)\)’)
147 while pos != −1:
148 result = pattern.search(text, pos − 1)
149 key = result.group("key")
150 r_text = ""
151 if key in env:
152 r_text = env[key]
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153 text = text.replace("$(%s)" % key, r_text)
154 length = len(r_text)
155

156 pos = string.find(text, "$(", pos + length)
157

158 # check for @ variables in config.status
159 pos = string.find(text, "@", 0)
160 pattern = re.compile(r’@(?P<key>[a−zA−Z0−9_]*)@’)
161 while pos != −1:
162 result = pattern.search(text, pos − 1)
163 if not result:
164 pos = string.find(text, "@", pos + 1)
165 continue
166 key = result.group("key")
167 r_text = ""
168 if key in env:
169 r_text = env[key]
170 text = text.replace("@%s@" % key, r_text)
171 length = len(r_text)
172

173 pos = string.find(text, "@", pos + length)
174 return text
175

176

177 def combine_files(cfiles, output_file, args):
178 " combine multiple c−files and replace all static variables, functions, and structs. Call all main functions

from one global one. "
179 seen_headers = set()
180 with open(output_file, "w") as output:
181 for prepend in args.prepend:
182 output.write(prepend)
183 output.write("\n")
184 main_calls = set()
185 for cfile in cfiles:
186 output.write("// script debug ouput. File: " + cfile + "\n")
187 with open(cfile, "r") as cfile_handle:
188 # link directory? or delete includes
189 if cfile[−1:] == "c":
190 output.write(prefix_identifiers(
191 cfile_handle.read(), cfile, copy.copy(seen_headers),
192 main_calls, args))
193 else:
194 print "ERROR: unknown file type " + cfile
195 output.write(
196 "int main(int argc, char** argv){\nprintf(\"total c−file\");\n")
197 for main_call in main_calls:
198 output.write(main_call + "(argc, argv);\n")
199 output.write("}")
200

201

202 IDENTIFIER_REGEXP = r’(?P<identifier>(?:enum|struct|union)\s*[a−zA−Z_][a−zA−Z_0−9]*)\s*(?:\{|;)’
203

204 HEADERS_CACHE = dict()
205 def get_identifiers_from_headers(files, include_dirs, seen_headers):
206 " opens all files and included headerfiles recursively. returns all found identifiers "
207 identifiers = []
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208 for hfile in files:
209 if hfile[−1:] == "h" and not hfile in seen_headers:
210 seen_headers.add(hfile)
211 if hfile in HEADERS_CACHE:
212 identifiers += HEADERS_CACHE[hfile]
213 else:
214 with open(hfile, "r") as hfile_handler:
215 content = hfile_handler.read()
216

217 # add identifiers
218 ident = re.findall(IDENTIFIER_REGEXP, content)
219 if not ident:
220 ident = []
221 ident += re.findall(
222 r’typedef (?P<identifier>(?:enum|struct|union)\s*[a−zA−Z_][a−zA−Z_0

−9]*)\s*[a−zA−Z_][a−zA−Z_0−9]*;’, content)
223

224 # search the sub headerfiles as well
225 includes_re = re.findall(
226 r’#include\s*"(?P<file>[^"]*)"’, content)
227 ident += get_identifiers_from_headers(
228 search_include_files(includes_re, include_dirs), include_dirs, seen_headers)
229 HEADERS_CACHE[hfile] = ident
230 identifiers += ident
231 return identifiers
232

233

234 def get_all_identifiers_from_cfile(content, include_dirs, seen_headers):
235 " extracts all identifiers from one c_file "
236 includes_re = re.findall(r’#include\s*"(?P<file>[^"]*)"’, content)
237 return get_identifiers_from_headers(search_include_files(includes_re, include_dirs), include_dirs,

seen_headers)
238

239

240 def search_include_files(headerfiles, include_dirs):
241 " searches the location of header files in the file system "
242 headers = []
243 for hfile in headerfiles:
244 found = False
245 for include_dir in include_dirs:
246 if os.path.exists(os.path.join(include_dir, hfile)):
247 headers.append(os.path.join(include_dir, hfile))
248 found = True
249 break
250 return headers
251

252

253 def prefix_identifiers(content, filename, seen_headers, main_calls, args):
254 " prefix static functions, variables, and data structues "
255 # not suported yet: typedef, macros
256

257 # Hack to ignore stuff inside of struct definitions
258 struct_re = re.findall(
259 r"struct [a−zA−Z_][a−zA−Z_0−9]*\s\{[^\}]*\}", content)
260

261 content = prefix_static(content, filename, main_calls, struct_re, args)
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262

263 content = prefix_data_types(content, filename, seen_headers, args)
264

265 return content
266

267 def prefix_static(content, filename, main_calls, struct_re, args):
268 # replace static variables
269 variables_regex = re.compile(
270 r"\nstatic[\sa−zA−Z_0−9]+(?: |\*|\n)+(?P<identifier>[a−zA−Z_][a−zA−Z_0−9]*)\s

*(?:;|=|{|\[|\()")
271 variables_re = variables_regex.findall(content)
272 if args.also_rename_static:
273 variables_re += args.also_rename_static
274

275 # always rename main function
276 main_re = re.search(r"\nint\s*main\s*\(", content)
277 if main_re:
278 main_calls.add(create_unique_identifier("main", filename))
279 variables_re.append("main")
280

281 def repl_variable(matchobj):
282 " replace each variable with a prefixed one "
283 identifier = matchobj.group("identifier")
284 if identifier in variables_re and not identifier in args.exclude_rename:
285 # do not change things inside of struct definitions
286 if matchobj.group(0).endswith(";"):
287 for struct in struct_re:
288 if matchobj.group(0) in struct:
289 return matchobj.group(0)
290 return matchobj.group("before") + create_unique_identifier(identifier, filename) + matchobj.

group("after")
291 else:
292 return matchobj.group(0)
293

294 variables_sub_occ_regex = re.compile(
295 r’(?P<before>(?<=\−[^_a−zA−Z\.\>]|[^\−][^_a−zA−Z\.]))(?P<identifier>[a−zA−Z_][a−zA−

Z_0−9]*)(?P<after>[^a−zA−Z_0−9])’)
296 content = variables_sub_occ_regex.sub(repl_variable, content)
297

298 return content
299

300 def prefix_data_types(content, filename, seen_headers, args):
301 # analyze header files
302 excluded_identifiers = get_all_identifiers_from_cfile(
303 content, args.include, seen_headers)
304 excluded_identifiers += args.exclude_rename
305

306 # Replace struct, enum and union
307 identifier_re = re.findall(IDENTIFIER_REGEXP, content)
308 if args.also_rename_structure:
309 identifier_re += args.also_rename_structure
310

311 def repl_identifier(matchobj):
312 " replace each identifier with a prefixed one "
313 identifier = re.sub(r"\s+", " ", matchobj.group("identifier"))
314 if identifier in identifier_re and not identifier in excluded_identifiers:
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315 return matchobj.group("before") + create_unique_identifier(identifier, filename) + matchobj.
group("after")

316 else:
317 return matchobj.group(0)
318

319 identifier_sub_regex = re.compile(
320 r’(?P<before>[^_a−zA−Z>\.]|^)(?P<identifier>(?:enum|struct|union)\s*[a−zA−Z_][a−zA−Z_0

−9]*)(?P<after>;|(?=[^a−zA−Z_0−9]))’, re.MULTILINE)
321 content = identifier_sub_regex.sub(repl_identifier, content)
322

323 return content
324

325

326 def create_unique_identifier(identifier, filename):
327 " prefix the identifier with the filename "
328 if " " in identifier:
329 # struct enum or union
330 prefix, ident = identifier.split(" ")
331 prefix += " "
332 else:
333 prefix = ""
334 ident = identifier
335 return "%s%s_%s" % (prefix, re.sub("[^a−zA−Z_0−9]", "_", filename), ident)
336

337

338 def main():
339 " start intrepretation in the current directory "
340 parser = argparse.ArgumentParser(description="Combining c−files")
341 parser.add_argument("−o", "−−output_file", type=str, default="total.c", help="Filename of the output c

−file")
342 parser.add_argument(’−−version’, action=’version’, version=’%(prog)s 1.0’)
343 parser.add_argument(’−I’, "−−include", type=str, action=’append’, default=[], help="Include

directories")
344 parser.add_argument("−−also−rename−structure", type=str, action=’append’, default=None, help="

Also rename these structures")
345 parser.add_argument("−−also−rename−static", type=str, action=’append’, default=None, help="Also

rename these functions")
346 parser.add_argument("−e", "−−exclude−rename", type=str, action=’append’, default=[], help="Do not

rename these names")
347 parser.add_argument("−−exclude−program", type=str, action=’append’, default=[], help="Do not

include these programs in the total file.")
348 parser.add_argument("−m", "−−module", type=str, action=’append’, required=True, help="Project

folders to combine, default is .")
349 parser.add_argument("−−prepend", type=str, action=’append’, default=[], help="Prepend this text to

the total c−file.")
350

351 args = parser.parse_args()
352 env = collections.OrderedDict()
353 files = []
354 for module in args.module:
355 files += interprete_makefile(module, env.copy(), args.exclude_program)
356 combine_files(files, args.output_file, args)
357

358 main()

Listing A.1: Aggregation script
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B. Typesystem for Functional Programs

<Exp> := <Const> | <Ident > | ( <Expr> ) | <un. Op> <Exp> |
<Exp> <bin. Op> <Exp> | if <Exp> then <Exp> else <Exp> |
<Exp> <Exp> | let <Prog> in <Exp> end

<Type> ::= int | bool | (<Type>) | <Type> → <Type>

T ` e : t denotes that in the type environment T the expression e has the type t.

T(b) = t

T ` b : t

k ∈ {true, false}

T ` k : bool

k ∈ Z
T ` k : int

T ` e : t

T ` (e) : t

T ` ◦ : t1 → t2 T ` e : t1

T ` ◦ e : t2

T ` e1 : t1 T ` ◦ : t1 → t2 → t T ` e2 : t2

T ` e1 ◦ e2 : t2

T ` e1 : bool T ` e2 : t T ` e3 : t

T ` if e1 then e2 else e3 : t

T ` e1 : t1 → t2 T → e2 : t1

T ` e1 e2 : t2
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C. Coverit E-Mail Support

E-Mail from the Coverity support on the modelling of function pointers from Mon, 13 Jan
2014.

The purpose of function pointer models is to provide information
to the analysis about function calls (that are performed via
function pointers) for which the analysis cannot track function
pointers properly.

Your usermodel.c does not appear to follow the naming conventions
described in the Coverity 6.0.3 Checker Reference section "4.1.4.
Modeling function pointers", eg,

__coverity_fnptr_<variable>
__coverity_fnptr_<type>_<field>

Also, to track defects through function pointers in general you’ll
need to use --enable-fnptr with cov-analyze (which you mentioned
that you are using) AND to model function pointers as described
in the Checker Reference you’ll also need --fnptr-models.

Let me know if this is helpful.

Best regards,
Mary, Coverity Support
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D. Aggregation Script Commandline Usage

usage: interpreter.py [-h] [-o OUTPUT_FILE] [--version] [-I INCLUDE]
[--also-rename-structure ALSO_RENAME_STRUCTURE]
[--also-rename-variable ALSO_RENAME_VARIABLE]
[--also-rename-function ALSO_RENAME_FUNCTION]
[-e EXCLUDE_RENAME]
[--exclude-program EXCLUDE_PROGRAM]
-m MODULE [--prepend PREPEND]

Combining c-files

optional arguments:
-h, --help show this help message and exit
-o OUTPUT_FILE, --output_file OUTPUT_FILE

Filename of the output c-file
--version show program’s version number and exit
-I INCLUDE, --include INCLUDE

Include directories
--also-rename-structure ALSO_RENAME_STRUCTURE

Also rename these structures
--also-rename-static ALSO_RENAME_STATIC

Also rename these identifiers
-e EXCLUDE_RENAME, --exclude-rename EXCLUDE_RENAME

Do not rename these names
--exclude-program EXCLUDE_PROGRAM

Do not include these programs in the total
file.

-m MODULE, --module MODULE
Project folders to combine, default is .

--prepend PREPEND Prepend this text to the total c-file.
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